Smart Component Modeling for Complex System Development

Philipp Helle, Sergio Feo-Arenis, Andreas Mitschke, Gerrit Schramm

Airbus Central R&T

CSD&M 2019 Paris, December 12th 2019

Customers demand

- New product features and capabilities
- With higher cadence

Development cycles are long and expensive

- Due to complexity
- Due to interdisciplinarity
- Due to customization
- Due to certification

Getting a product quick to the market

- Important for business success
- Customers tend to stop ordering old products in case a new one is announced

Increase development velocity and product quality without negative impacts on performance or certification

AIRBUS

- Introduction of a new development process (Out of cycle)
- Digitalization of all process steps (MBSE)
- Automation where possible (supporting tool infrastructure)

Way of Working

- Central R&T to work independently from current tool vendor policy
- Ideal, greenfield approach
- Regular exchange with bigger Airbus initiatives; but not directly part of it

-AIRBUS DMU Contract Detailed Models Models 100) <u>– (</u> titi. HH 1111 1111 Concept Smart Components Model Concept Smart Components Model Instance Smart Components Model Instance Smart Components Model "New Galley" "New Galley" "New Galley" "New Galley" **Out of Cycle Process**

What is a Smart Component Model?

1414 Characteristics Parameter K Port Port Direct Processing **Smart Component Model** Port Port Port Port Preprocessing Preprocessing Postprocessing Postprocessing Performance Model e.g. Surrogate for Cost Type, RC, NRC Configuration Rating, Type, Weight, Center **Performance Model** Configuration of Gravity e.g. Gravimetric

Mechanisms of Smart Component Models

Parameter

Input variables that configure the model

Characteristics

Output variables that are calculated from input parameters

Parts/Occurrences

Allow decomposition of models

Transfer / Computation

Transfer information between model elements, potentially performing transformations

Model References

Specify external discipline models used to calculate performance or behavioral indicators

Aggregation Nodes

Perform internal computations

Constraints

Specify value or structural requirements for all model elements

Ports

Represent interfaces of the modelled entity

Connectors

Connects pair of ports

- Explicit parameterization of models
- Occurrence modeling for deep nested modeling
- Formal type system with type and value checking
- References to external domain models
- Constraint definition and checking based on OCL¹/AQL²
- Flexible relation modeling
- Supporting tool infrastructure

¹Object Constraint Language ²Acceleo Query Language

Model editor – SCM Workbench

——AIRBUS

Supporting Tool Infrastructure

• New development with Out of Cycle development of components requires fitting metamodel

- EMF/Sirius allow agile metamodel and model editor development
- Evaluation of SCM approach in various use cases from different domains like manufacturing, design and operations successful
- Next steps: handover for industrialization of method & tools

